Transduced PEP-1-heme oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury.
نویسندگان
چکیده
BACKGROUND Heme oxygenase-1 (HO-1) has been shown to have antioxidant and anti-apoptotic properties. The present study transduced HO-1 protein into intestinal tissues using PEP-1, a cell-penetrating peptide, and investigated its potentiality in prevention against intestinal ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS PEP-1-HO-1 fusion protein was administered intravenously to explore the time and dose characteristics through measuring serum HO-1 levels. Twenty-four male Sprague-Dawley rats were randomly divided into three groups: sham, intestinal I/R (II/R), II/R + PEP-1-HO-1 fusion protein (HO). The model was established by occluding the superior mesenteric artery for 45 min followed by 120 min reperfusion. In HO group, PEP-1-HO-1 was administered intravenously 30 min before ischemia, whereas animals in sham and II/R groups received the equal volume of physiological saline. After the experiment, the intestines were harvested for determination of histologic injury, wet/dry ratio, enzyme activity, apoptosis, and His-probe protein (one part of PEP-1-HO-1). RESULTS Levels of serum HO-1 were dose- and time-dependent manner after intravenous injection of PEP-1-HO-1. I/R caused deterioration of histologic characteristics and increases in histologic injury scoring, wet/dry ratio, myeloperoxidase activity, malondialdehyde, and intestinal apoptosis. These changes were also accompanied by a decrease in superoxide dismutase activity (P < 0.05). PEP-1-HO-1 treatment significantly reversed these changes (P < 0.05). Furthermore, His-probe protein expression was only detected in PEP-1-HO-1-treated animals. CONCLUSION Treatment of PEP-1-HO-1 attenuates intestinal I/R injury, which might be attributable to its antioxidant and anti-apoptotic roles of HO-1.
منابع مشابه
Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Reduces Remote Organ Injury Induced by Intestinal Ischemia/Reperfusion
BACKGROUND A fusion protein composed of heme oxygenase-1 (HO-1) and cell-penetrating peptide PEP-1 has been shown to reduce local intestinal injury after intestinal ischemia/reperfusion (I/R). In this study, we investigated the effects of PEP-1-HO-1 fusion protein on remote organ injury induced by intestinal I/R in rats. MATERIAL AND METHODS We randomly assigned 24 male Sprague-Dawley rats to...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملCardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice.
Heme oxygenase (HO)-1 degrades the pro-oxidant heme and generates carbon monoxide and antioxidant bilirubin. We have previously shown that in response to hypoxia, HO-1-null mice develop infarcts in the right ventricle of their hearts and that their cardiomyocytes are damaged by oxidative stress. To test whether HO-1 protects against oxidative injury in the heart, we generated cardiac-specific t...
متن کاملIn vivo protein transduction: delivery of PEP-1-SOD1 fusion protein into myocardium efficiently protects against ischemic insult.
Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells coun...
متن کاملIsoproterenol‑mediated heme oxygenase‑1 induction inhibits high mobility group box 1 protein release and protects against rat myocardial ischemia/reperfusion injury in vivo.
Isoproterenol (ISO) has been reported to inhibit high mobility group box 1 (HMGB1) protein release via heme oxygenase-1 (HO-1) induction in lipopolysaccharide (LPS)-activated RAW 264.7 cells and increase the survival rate of cecal ligation and puncture (CLP)-induced septic mice. Therefore, it was examined whether ISO-mediated HO-1 induction inhibits HMGB1 release in cardiac myocytes and attenua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of surgical research
دوره 187 1 شماره
صفحات -
تاریخ انتشار 2014